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Is Michael Moore liberal America’s 
Rush Limbaugh? If so, is he fi lling a 
much needed, or a much lamented, 

gap in turning issues that are really cast 
in pastel shades into Day-Glo relief? 
In this hale monograph, Jeff Hawkins 
(rendered by Sandra Blakeslee) 
plays exactly this role for theoretical 
neuroscience. As a pastel practitioner 
myself, but furtively sharing many of 
Hawkins’ prejudices and hunches 
about computational modelling in 
neuroscience, I am caught between 
commendation and consternation. 

Hawkins is an engineer, 
entrepreneur, and scientist who 
founded and led the companies 
Palm and then Handspring. He 
created, against what must have been 
considerable obstacles, the fi rst widely 
successful PDA, and continued the 
development of this platform. He 
has thus amply earned a bully pulpit. 
The autobiographical segments of 
this book detail that, throughout 
his career, he has been interested in 
understanding how the brain works, 
using his substantial knowledge and 
intuition about the architecture and 

design of conventional computers as a 
counterpoint. 

More recently, Hawkins has 
generously put his money where 
his ideas about mentation dictate, 
founding the Redwood Neuroscience 
Institute and also funding various 
conferences and workshops. The 
institute is dedicated to ‘studying 
and promoting biologically accurate 
mathematical models of memory 
and cognition.’ Despite its youth, the 
Institute already has attracted notable 
attention as a centre for theoretical 
neuroscience. Hawkins’ quest, and—
depending on which statements of 
the book you read—its endpoint (‘... a 
comprehensive theory of how the brain 
works ... describ[ing] what intelligence 
is and how your brain creates it’) or just 
its tipping point (‘join me, along with 
others who take up the challenge’), are 
the subject here. 

There are really three books jostling 
inside the covers. One is the (highly 
abbreviated) autobiography. The 
history of modern computing is very 
brief and (at least judging by the 
sales) very glorious, and this story is 
most entertaining. Don’t miss the 
wonderfully faux naive letter from 
Hawkins to Gordon Moore asking, 
in 1980, to set up a research group 
within Intel devoted to the brain. That 
Hawkins prospered in clear opposition 
to accepted wisdom is perhaps one of 
the key subtexts of the book. 

The second, and rather less 
satisfying, book is about the philosophy 
of mind and the history of artifi cial 
intelligence and neural network 
approaches to understanding the brain 
and replicating cognition. With respect 
to the fi elds of artifi cial intelligence 
and neural nets, the text seems rather 
to be fi ghting yesterday’s battles. The 
importance of learning, fl exibility in 
representation and inference, and 
even decentralisation of control has 
been more than amply recognised in 
the inexorable rise of probabilistic 
approaches in both fi elds. 

With respect to the philosophy of 
mind, there seems to be something of 
an enthusiast’s disdain for the niceties 
of philosophical pettifogging, even 

arguing by assertion. The discussions at 
the end on creativity and consciousness 
all seem a bit gossamer. The book is 
somewhat careless about functionalism, 
a key doctrine for computational 
theorists about how brains give rise 
to minds. According to this doctrine, 
at least roughly, it is the functional 
roles of, and functional interactions 
among, the physical elements of brain 
that matter, and not their precise 
physical nature. If you can capture 
those functional aspects correctly, for 
instance, in a computer program, then 
you can (re-)create what’s important 
about mental states. Functionalism 
licenses a form of inquiry into the 
computational jobs played by structures 
in the brain. However, although 
formally agreeing that ‘there’s nothing 
inherently special or magical about the 
brain that allows it to be intelligent,’ 
the book slips into statements 
such as ‘brains and computers do 
fundamentally different things,’ which 
are, at best, unfortunate shorthand. 

The book is a little apt to sneak 
plausible, but misleading, claims under 
the radar. Just to give one instance, 
it compellingly compares a six year 
old hopping from rock to rock in a 
streambed with a lumbering robot 
failing to do the same task. However, 
this is a bit unfair. One of Hawkins’ 
self-denying ordinances is to consider 
the cortex pretty much by itself. As 
afi cionados of the cerebellum (an 
evolutionarily ancient brain region 
with a special role in the organisation 
of smooth, precise, well-timed, and 
task-sensitive motor output) would be 
quick to point out, the singular role for 
the cortex in such graceful behaviour is 
rather questionable. 
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The third book is what I think is 
intended to be the real contribution. 
This contains a (not wholly convincing) 
attempt to conceptualise the defi nition 
of intelligence in terms of prediction 
rather than behaviour, and then to 
describe its possible instantiation in the 
anatomy (and mostly only the anatomy) 
of the cortex. 

Unsupervised Learning

To situate Hawkins’ suggestions, it is 
instructive to consider current models 
of how the cerebral cortex represents, 
and learns to represent, information 
about the world without being explicitly 
taught. Being a popular account, the 
book fairly breezes by these so-called 
unsupervised learning models (see 
Hinton and Ghahramani 1997; Rao 
et al. 2002), in which the neocortex is 
treated as a general device for fi nding 
relationships or structure in its input. 
The algorithms are called unsupervised 
since they have to work without 
detailed information from a teacher or 
a supervisor about the actual structure 
in each input. Rather, they must rely on 
general, statistical characteristics.

First, where does the structure in 
the inputs come from? For the sake 
of concreteness, think of the input 
as being something like movies on a 
television screen. Movies don’t look like 
white noise, or ‘snow’, because of their 
statistical structure. For instance, in 
movies, pixel activities tend to change 
rather slowly over time, and pixels that 
are close to each other on the screen 
tend to have relatively similar activities 
at any given time. Neither of these is 
true of white noise. More technically, 
movies constitute only a tiny fraction 
of the space of all possible activations 
of all the pixels on your screen. They 
(and indeed real visual scenes) have a 
particular statistical structure that the 
cortex is supposed to extract. 

What is the cortex supposed to 
do with this structure? The idea 
is that the cortex learns to model, 
or ‘parameterize’, it. Then, the 
activities of cortical cells over time 
for a particular input, for example, a 
particular face in a movie, indicate the 
values of the parameters associated 
with that face. Thereby the cortical 
activities represent the input. The 
parameters for a face might include 
one set for its physical structure 
(e.g., the separation between the 
eyes and whether it is more round 

or more square), another set for the 
expression, and yet others, too. 

Cortical representations are thus 
intended to refl ect directly the 
statistical structure in the input. 
Importantly, for inputs such as 
movies, this structure is thought to 
be hierarchical and, concomitantly, 
to provide an account of the 
observed hierarchical structure of 
sensory cortical areas. One source of 
hierarchical structure in movies is the 
simple fact that objects (such as the 
faces) have parts (such as eyes and 
cheeks) whose form and changes in 
form over time are interdependent. 
Another source of hierarchical 
structure is that the same face can 
appear in many different poses, under 
many different forms of illumination, 
and so on. Pattern theory (Grenander 
1995), one of the parent disciplines 
of the fi eld, calls these dimensions 
of variation deformations. Loosely, 
the deformations are independent 
of the objects themselves, and we 
might expect this independence 
to be refl ected in the cortical 
representations. Indeed, there is 
neurophysiological evidence for just 
such invariant neural responses to 
deformations of a stimulus. 

How does the cortex do all this? Of 
course, some fraction of this structure 
was built in over evolution. However, 
the unsupervised learning tradition 
concentrates on ontogenic adaptation, 
based on multiple presented input 
movies. An additional facet of the lack 
of supervision is that this adaptation 
is taken as not depending on any 
particular behavioural task. 

Finally, what does this process 
allow the cortex to do? The whole 
representational structure is intended 
to support inference. Crudely, this 
involves turning partial or noisy 
inputs into the completed, cleaned-up 
patterns they imply, using connections 
between areas in the cortical hierarchy. 
Construed this way, probabilistic 
inference actually instantiates a very 
general form of computation. Crucially, 
over the course of the development 
of unsupervised learning methods, 
it has been realised that the best way 
to approach the extraction of input 
structure, and inference with it, is 
through the language and tools of 
probability theory and statistics. The 
same realisation has driven substantial 
developments in artifi cial intelligence, 

machine learning, computer vision, 
and a host of other disciplines. 

Predictive Auto-Association

We can now return to the book. 
Hawkins compactly sums up his 
thesis in the following way. ‘To make 
predictions of future events, your 
neocortex has to store sequences 
of patterns. To recall appropriate 
memories, it has to retrieve patterns 
by their similarity to past patterns 
(auto-associative recall). And fi nally, 
memories have to be stored in an 
invariant form so that the knowledge 
of past events can be applied to new 
situations that are similar but not 
identical to the past.’ In fact, to take 
the latter points fi rst, the sort of 
auto-associative storage and recall to 
which Hawkins refers is a theoretically 
and practically hobbled version of 
unsupervised learning’s probabilistic 
inference. Invariance is closely related 
to the deformations we described above 
in the context of pattern theory. 

Unsupervised learning has certainly 
paid substantial attention to sequences 
of inputs and prediction, and to some 
good effect. For instance, (artifi cial) 
speech recognition programs are 
based on a probabilistic device called 
a hidden Markov model, which is a key 
element in a wealth of unsupervised 
learning approaches to prediction. 
However, despite heroic efforts, these 
modelling methods are incapable 
of capturing the sort of complex 
structure seen in inputs such as natural 
languages. They fail on phenomena 
like long-distance dependencies, for 
example, the agreement between the 
cases of subjects and verbs, which are 
rife. This does tend to offer a vaccine 
against Hawkins’ otherwise infectious 
optimism. 

Once place in which Hawkins goes 
beyond existing unsupervised learning 
models is in an extension to actions 
and control, and in an ascription of 
parts of the model to cortical anatomy. 
The hierarchical conception of cortex 
here goes all the way down to primary 
motor cortex (the neocortical area 
most directly associated with motor 
output). This allows auto-associative 
recall of sequences of past inputs and 
outputs to be used to specify actions 
that have formerly been successful. 
The discussion of this possibility is, 
unfortunately, rather brief. Central 
issues are omitted, such as the way 
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that planning over multiple actions 
might happen. Also, the way that value 
is assigned to outcomes to determine 
success or failure is not discussed. 
The latter is widely believed to involve 
the neuromodulatory systems that lie 
below the cortex and that the book’s 
cortical chauvinism leads it cheerfully 
to ignore. 

By contrast, the book has a rather 
detailed description of how the 
model should map onto the anatomy 
of the cerebral cortex. Like many 
unsupervised learning modellers, 
Hawkins is a self-confessed ‘lumper’. 
He ignores huge swathes of complexity 
and specifi city in cortical structure and 
connections in favour of a scheme of 
crystalline regularity. Though this will 
doubtless irk many readers (as will the 
lack of citations to some infl uential 
prior proponents such as Douglas 
and Martin [1991]), some (though 
not necessarily this) strong form of 
abstraction and omission is necessary to 
get to clear functional ideas. This part 
has interesting suggestions, such as a 
neat solution for a persistent dilemma 
for proponents of hierarchical models. 
The battle comes between cases in 
which information in a higher cortical 
area, acting as prior information, boosts 
activities in a lower cortical area, and 
cases of predictive coding, in which 
the higher cortical area informs the 
lower cortical area about what it already 
knows and therefore suppresses the 
information that the lower area would 
otherwise just repeat up the hierarchy. 
The proposed solution involves the 
invention (or rather prediction) of 
two different sorts of neurons in a 
particular layer of cortex. 

Unsupervised learning models of 
cortex are without doubt very elegant. 
However, if pushed, purveyors of this 
approach will often admit to being 
kept awake at night by a number of 
critical concerns even apart from the 
diffi culty of getting the models to work 

in interestingly rich sensory domains. 
Does the book provide computational 
Halcyon? First, the representations 
acquired by unsupervised learning are 
intended to be used for something—
such as accomplishing more specifi c 
learning tasks, for example, making 
predictions of reward. However, most 
aspects of the statistical structure of 
inputs are irrelevant. This might be 
called the ‘carpet’ problem: there is 
a wealth of statistical structure in the 
visual texture of carpets; however, 
this structure is irrelevant for almost 
any task. Capturing it might therefore 
(a) constitute a terrible waste of 
cortical representational power, or, 
worse, (b) interfere with, or warp, the 
parameterization of the aspects of the 
input that are important, making it 
harder to extract critical distinctions. 
The book does not address this 
issue, relying on there being enough 
predictive power to capture any and 
all predictions, including predictive 
characterisation of motor control. 

Second, although our subjective 
sense is that we build a sophisticated 
predictive model of the entire 
sensory input, experiments into such 
phenomena as change blindness 
(Rensink 2002) show this probably 
isn’t true. A classic example involves 
alternating the presentation of 
two pictures, which differ in some 
signifi cant way (e.g., the colour 
of the trousers of one of the main 
protagonists). Subjects have great 
diffi culty in identifying the difference 
between the pictures, even though 
(a) they are explicitly told to look 
for it, (b) they have the subjective 
sense that they have represented all 
the information in each picture, and 
(c) if the location of the change is 
pointed out, they see it as blindingly 
obvious. This, and other attentional 
phenomena, suggests that substantially 
less is actually represented than we 
might naively think. In fact, elaborate 

computations go into selecting aspects 
of the input to which the models might 
be applied, and sophisticated models 
of these computations, such as Li’s 
salience circuit (2002), involve aspects 
of cortical anatomy and physiology 
ignored in the book.

As a fi nal example of a spur to 
insomnia, unsupervised learners 
worry that Damasio (1994) might be 
somewhat right. That is, cool logic and 
hot emotion may be tightly coupled in 
a way that a model such as this that is 
rigidly confi ned to cortical processing, 
ignoring key subcortical contributions 
to practical decision making, will fi nd 
hard to capture. 

To sum up, in terms of the adage 
that genius is 1% inspiration and 99% 
perspiration, the book’s enthymematic 
nature suggests that not quite enough 
sweat has been broken. Were it 1% 
inspiration and 99% aspiration, 
though, then the appealing call to 
arms for a new generation of modellers 
should more than suffi ce. �
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